Anomaly detection schemes in complex-valued SAR imaging Work progress presentation

Huv Nguyen - 1st year PhD Student

Thesis Director: Joana Frontera-Pons (ONERA) Supervisors: Jean-Philippe Ovarlez (SONDRA/ONERA), Chengfang Ren (SONDRA), Jérémy Fix (LORIA)

August 27 2025

- Context
 - Anomaly Detection
 - Problem definition
- Methodology overview
 - Methodology overview
 - Anomaly detection scheme
- VAE for SAR anomaly detection
 - SAR despeckling
 - β-annealing VAE
 - Change detection
 - Results

Anomaly Detection

What are anomalies?

 An anomaly refers to an observation that deviates significantly from the expected data pattern.

What can be considered as anomalies in SAR images?

- Depend on the context and scenario
- Abnormal pixel or pixels significantly different from adjacent, surrounding or global background pixels

What are the challenges?

- Natural presence of speckle which induces many false alarms.
- Lack of labeled data
- Multidimensionality and Complex-valued nature of SAR signals

Figure: ONERA SETHI L-band image with anomalies

Huy Nguyen Anomaly detection schemes in complex-valued SAR imaging August 27 2025 3 / 16

Figure: ONERA Sethi X-band quad-polarization images. HH, HV, VV represent R, G, B channels respectively.

Mathematical formulation:

$$\begin{cases} H_0: \mathbf{x}_t \sim P_{\mathbf{x}_s} \text{ (no anomaly),} \\ H_1: \mathbf{x}_t \not\sim P_{\mathbf{x}_s} \text{ (anomaly),} \end{cases}$$

where P_{x_s} is the distribution of the surrounding pixels.

Zone of study:

- Test each pixel \mathbf{x}_t individually
- Measure the distance between test pixel x_t and the background distribution P_{xs}.

Methodologies

What do we expect? An anomaly map that helps us answer these key questions:

- Are there any anomalies in this study area?
- Where are they?
- What should the tolerance boundary of the false alarms be?

Figure: Measuring the point-to-distribution distance to determine an anomaly score for each outlier.

Traditional detector: Reed-Xiaoli

$$RXD_{SCM}(\mathbf{x}_t) = (\mathbf{x}_t - \hat{\boldsymbol{\mu}}_{SMV})^H \hat{\boldsymbol{\Sigma}}_{SCM}^{-1} (\mathbf{x}_t - \hat{\boldsymbol{\mu}}_{SMV}) \overset{H_1}{\underset{H_0}{\gtrless}} \lambda$$

With $\hat{\Sigma}_{SCM}$ and $\hat{\mu}_{SMV}$ the Sample Covariance Matrix and the Sample Mean Vector, respectively.

I. Reed and X. Yu (1990), Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 38, no. 10, pp. 1760–1770

Huv Nguven

Anomaly detection scheme

Figure: M. Muzeau et al. Self-supervised learning based anomaly detection in synthetic aperture radar imaging. IEEE Open Journal of Signal Processing, 3:440-449, 2022

SAR Anomaly Detection in 3 steps:

- Despeckling to reduce the probability of false alarm
- Determining the general distribution of the clutter and use the learned features to reconstruct an anomaly-free image with a deep convolutional neural network.
- **Detecting changes** between the despeckled image and the reconstructed image.

sElf-supeRvised Despeckling with the **coMplex** despeckLINg algorithm (MERLIN):

- Hypothesis: independence of the real and imaginary components of the complex-valued signals.
- Minimize the distance between the real and the imaginary.
- State-of-the-art performance against SAR2SAR, with a simpler training strategy due to self-supervised learning techniques and does not require time-series data.
- MERLIN works in single-channel, and must be applied to each polarimetric channel HH, HV, VH, VV individually.

Figure: Single-Look complex image (top) vs despeckled image with MERLIN (bottom).

Dalsasso E. et al. (2021). As if by magic: Self-supervised training of deep despeckling networks with MERLIN, IEEE Transactions on Geoscience and Remote Sensing: 60, pages 1-13

Huv Nguven August 27 2025 7 / 16

Figure: VAE architecture. $\mathcal X$ and $\hat{\mathcal X}$ denote respectively despeckled and reconstructed SAR images.

What is VAE?

- A deep generative network designed to learn the underlying distribution of data and to generate new samples that resemble the training data.
- An AutoEncoder with a probabilistic approach, based on Bayes theories.
- The latent space z is regularized with a prior distribution via Kullback-Leibler criterion.

Kingma D. P., Welling M. (2013). Autoencoding variational Bayes

Huy Nguyen Anomaly, distriction schemes in complex-valued SAR imaging August 27 2025

Figure: VAE architecture. ${\cal X}$ and $\hat{{\cal X}}$ denote respectively despeckled and reconstructed SAR images.

Why should we use VAE?

- To generate an anomaly-free image.
- Anomalies are rare, therefore have few impact on the reconstruction loss function.
- Anomalies are outliers in latent space. The Kullback-Leibler criterion will force the latent vector not to preserve these data points.

Huv Nguven

Encoder & Decoder

Mirror operations:

- 5 encoding blocks 5 decoding blocks
- Spatial compression by Encoder with MaxPooling operations.
- Nearest Neighbors algorithm decodes output images from the latent space.

Finally, the reconstructed image $\hat{\mathcal{X}}$ is obtained with

$$\hat{\mathcal{X}} = \operatorname{Sigmoid}(\operatorname{Conv}(\mathcal{G}_N)),$$

where Sigmoid is the final activation function and Conv is the convolution operation.

Figure: Configuration of each encoder and decoder block

Reparameterization trick

VAEs are used to model an a posteriori distribution $p(\mathbf{z}|\mathcal{X})$ with the encoder output data distribution $q(\mathbf{z}|\mathcal{X})$. However, the sampling operation is not straight forward and can bloc the backpropagation gradient flow.

The reparameterization trick consists in:

- sampling a separate Normal distribution for $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- performing a variable change $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$

This leads to

$$extbf{z} \sim \mathcal{N}\left(oldsymbol{\mu}, \operatorname{diag}\left(oldsymbol{\sigma}^{\circ 2}
ight)
ight)\,,$$

where μ et σ are two estimated parameters representing the mean and the standard deviation components of $\mathbf{z}|\mathcal{X}$.

Huv Nguven

Loss function

Optimizing a VAE consists in minimizing the *Evidence Lower BOund* or ELBO loss function:

$$ELBO = \mathcal{L}_{rec} - D_{KL}(q(\mathbf{z}|\mathcal{X})||p(\mathbf{z})), \qquad (1)$$

where $\mathcal{L}_{rec} = \mathbb{E}_{q(\mathbf{z}|\mathcal{X})}[\log(p(\mathcal{X}|\mathbf{z})], p(\mathcal{X}|\mathbf{z})]$ is the generative distribution.

Using a Gaussian prior distribution, the Kullback-Leibler criterion is expressed with μ_j and σ_j components of the mean μ and standard deviation σ vectors:

$$D_{KL}(q(\mathbf{z}|\mathcal{X})||p(\mathbf{z})) = -\frac{1}{2} \sum_{j=1}^{J} \left(1 + \log(\sigma_j^2) - \mu_j^2 - \sigma_j^2\right), \qquad (2)$$

To improve the image reconstruction quality, we consider an extension, the β -annealing VAE. The new loss function becomes: $\mathcal{L}_{VAE} = \mathcal{L}_{rec} - \beta \, D_{KL} \, . \tag{3}$

Figure: β annealing strategy.

12 / 16

Fu H. et al. (2019). Cyclical annealing schedule: A simple approach to mitigating KL vanishing. arXiv:1903.10145

Huy Nguyen Anomoly detection schools in complex velocity SAR imaging August 27 2025

Change detection

The anomaly map is obtained by comparing the squared Frobenius norm between the despeckled image and the reconstructed image. For each pixel, let

$$A_{k,l} = \left\|\hat{\mathbf{\Sigma}}_{k,l}^{\hat{\mathcal{X}}} - \hat{\mathbf{\Sigma}}_{k,l}^{\mathcal{X}}\right\|_F^2,$$

be the anomaly score of pixel k, l for $k \in [|0; h-1|], l \in [|0; w-1|]$.

Figure: Detecting changes between despeckled image (left) and reconstructed image with VAE (right).

Figure: Local boxcar $\mathcal{B}_{k,l}$ for each test pixel k,l used to compute the Frobenius norm.

Huy Nguyen

Reconstruction quality

Figure: Qualitative comparison

Metrics	AAE	VAE - L ²	VAE - L ¹
PSNR	33.19	31.46	32.41
SSIM	0.866	0.886	0.892

Table: Quantitative comparison

Anomaly map

Figure: Comparison between anomaly maps, computed with the Frobenius norm for AAE and VAE vs Reed-Xiaoli Detector.

Thank you for your attention!

The Pytorch Complex-Valued Neural Networks torchcvnn library is under active development, feel free to join us on this effort!

- Library available on https://github.com/torchcvnn
- Examples available on https://github.com/torchcvnn/examples
- Documentation https://torchcvnn.github.io/torchcvnn

Contact:

- CentraleSupélec: huy.nguyen@centralesupelec.fr
- ONERA: xuan_huy.nguyen@onera.fr
- Personal website: https://liam-huynguyen.fr

