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Anomaly detection
Anomalies refer to observations that deviate signif-
icantly from the expected data pattern. Anomaly
detection in SAR imaging is challenging, due to the
presence of speckle which induces many false pos-
itives and to the lack of labeled data.

Mathematical formulation:{
H0 : θ1 = θ2 (no anomaly),
H1 : θ1 ̸= θ2 (anomaly),

with θ1 and θ2 are estimated parameters vectors
of the pixel values distribution.
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We adopt the anomaly detection methodology proposed in [3], which locates
abnormous pixels by computing the deviation of a zone characteristics to the
normal distribution. Instead of using the proposed AAE, we study an extension
of the VAE family, called β-annealing VAE [2].

β-annealing VAE

VAE architecture. X and X̂ denote respectively despeckled and reconstructed
SAR images. To obtain X , we apply MERLIN algorithm [1] on a Side Look

Complex SAR image.
Loss function:
Optimizing β-annealing VAE means minimizing the Evidence Lower BOund loss
function, whose formulation is expressed as LELBO = Lrec + β DKL where
Lrec can be an L1 or L2 distance and
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Reconstruction images:
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Quantitative comparison:

Metrics AAE VAE - L2 VAE - L1

PSNR 33.19 31.46 32.41
SSIM[4] 0.866 0.886 0.892

Change detection
The anomaly detection process ends with the comparison between reconstructed
images by the β-annealing VAE and the despeckled images. SAR images, hav-
ing a high spatial and spectral dynamic range, therefore necessitate calculating
statistics locally. We use the Frobenius norm as distance metric:
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where Σk,l denotes the Sample Covariance Matrix of boxcar Bk,l, computed with
the Sample Mean Vector µ̂k,l:
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Anomaly map:
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Observations
Image reconstruction quality:
• Our VAE generates blurrier results than AAE’s, but mitigates stronger high

energetic targets.
• VAE with L1 reconstruction loss outputs less blurry images than L2

Anomaly map:
• Both AAE and VAE give lower false positives than Reed-Xiaoli detector.
• Reed-Xiaoli detector isolates better high-bounce targets.
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