
torchcvnn: A PyTorch-based library to easily
experiment with state-of-the-art Complex-Valued

Neural Networks
Jérémy Fix†, Quentin Gabot∗‡, X. Huy Nguyen∗‡,

Joana Frontera-Pons‡, Chengfang Ren∗ and Jean-Philippe Ovarlez∗‡
∗SONDRA, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France,
†LORIA, CNRS, CentraleSupélec, Université Paris-Saclay, F-57000 Metz, France,

‡DEMR, ONERA, Université Paris Saclay, F-91123 Palaiseau, France.

Abstract—Complex-valued neural networks (CVNN) have at-
tracted increasing attention in recent years, although their
definition dates back to the mid-20th century. Indeed, several
domains naturally process complex-valued signals, such as when
sensing involves the response to an electromagnetic wave, such
as remote sensing, MRI, etc. These domains would benefit from
breakthroughs in complex-valued neural networks (CVNNs). We
believe independent contributions to CVNNs must be gathered
in a single, easy-to-use library. torchcvnn is an effort in that
direction and provides several complex-valued building blocks,
allowing us to experiment with CVNNs easily. The library
is available at https://github.com/torchcvnn/torchcvnn alongside
examples available at https://github.com/torchcvnn/examples.

I. INTRODUCTION

Complex-valued Neural Networks (CVNNs) are a special-
ized type of artificial neural network where weights, inputs,
activations, and outputs are represented by or process complex
numbers. These networks are particularly well-suited for tasks
involving complex-valued data or representations, e.g. Fourier
transform and spectrogram. Although CVNNs have a long
history [1], recent years have seen a resurgence of interest,
particularly as their applications have begun to be extensively
explored. Notable examples include their use in complex-
valued data from synthetic aperture radar (SAR) [2]–[4] and
MRI [5]. In the case of SAR systems, electromagnetic waves
are transmitted, and the backscattered signals, characterized
by both magnitude and phase, are measured. Additionally,
CVNNs have gained attention for their potential in simulat-
ing bio-inspired spiked neural networks [6], particularly in
applications related to neuronal synchrony for object discovery
tasks [7].

Traditional real-valued neural networks can only process
magnitude information, resulting in the loss of critical physical
characteristics of the signals [8]. In contrast, CVNNs can fully
utilize the complex nature of such data. This capability is
essential in applications like Interferometric SAR (InSAR),
where phase information is vital for extracting elevation data,
and Polarimetric SAR (PolSAR), where understanding the
physical and geometric properties of the observed area relies
heavily on the phase information from polarization channels.

While the development of open-source frameworks like
Theano, TensorFlow, and PyTorch has fueled rapid experimen-
tation in real-valued neural networks, complex-valued neural
networks have not received the same support in popular deep
learning frameworks. Additional libraries are still needed to
build upon these popular frameworks and include the nec-
essary components for CVNNs. In TensorFlow and PyTorch,
the optimization of complex-valued neural networks with real-
valued loss is conducted using Wirtinger calculus. However,
to effectively experiment with CVNNs, we also need various
building blocks such as layers (e.g., fully connected, convolu-
tion, attention, batch normalization, etc.), activation functions,
initializers, and access to standard dataset benchmarks. Recent
work based on TensorFlow offers some of these elements [9].
At the same time, contributions in PyTorch are often scattered
across various code repositories and sometimes rely on real-
valued networks where the real and imaginary components
are separated. Fortunately, now that PyTorch fully supports
complex-valued differentiation, we can work on extensions
that genuinely support complex-valued representations. Thus,
we have started to develop torchcvnn, a library aiming to
propose a PyTorch-like environment for CVNNs.

The objective of the torchcvnn library is to provide
state-of-the-art models, including layers, activation functions,
initialization functions, and standard datasets, to facilitate
experimentation with complex-valued neural networks. The
goal is to offer the community a modular library that simplifies
the exploration of CVNNs.

The paper is organized as follows: in Section II, we briefly
introduce the different components of the torchcvnn library,
followed by different showcases on various tasks such as
classification or segmentation of remote sensing data and
neural implicit representations for MRI in Section III.

Notations: Italic type indicates a scalar quantity, lower case
boldface indicates a vector quantity, and upper case boldface
indicates a matrix or tensor. The conjugate operator is .̄ and
the transpose conjugate operator is H . x ∼ N (µ, σ2) is a
random Normal variable of mean µ and standard deviation σ,
x ∼ U(a, b) is a random uniform variable between a and b.
The operator ∥.∥2 is the Frobenius norms operator, while ∥.∥1

https://github.com/torchcvnn/torchcvnn
https://github.com/torchcvnn/examples

is the l1-norm. The operator ⊙ is the Hadamard product. The
operator ∇ is the Gradient differential operator. The symbol
1 is a matrix with all elements equal to 1. Finally, F(.)
and F−1(.) are the Fourier transform and the inverse Fourier
transform, respectively.

II. THE COMPONENTS OF TORCHCVNN

In this section, we describe the components offered by
torchcvnn to experiment with complex-valued neural net-
works. It essentially covers datasets and layers. Some of
the layers require a specific implementation when working
with complex-valued tensors. The others, such as upsampling,
average pooling, and dropout, are provided by the library for
technical reasons because the PyTorch framework (sometimes
due to lower level implementations in CUDA) does not yet
allow the application of these operations on complex-valued
tensors (although, for example, averaging real numbers or
complex numbers is the same operation). For these layers,
torchcvnn reformulates the corresponding operation with
the equivalent real-valued operation.

A. Datasets

torchcvnn offers classes for loading several datasets,
some from the medical domain with cine MRI and some
from the remote sensing domain. When the data are publicly
available, a simple flag instructs torchcvnn to download
the data. Illustrations of samples of the different datasets are
given in Figure 1.

The API follows the usual PyTorch API for the datasets. The
datasets usually expect the root directory of the dataset, possi-
bly a flag to instruct downloading the data automatically, and a
transform to be applied to the data once loaded. Additionally,
some datasets support being split into tiles with a parametric
overlap. This is a typical case for remote sensing datasets
where the images are large and subdivided into smaller patches
for further processing. As a matter of illustration, the code
in Listing 1 loads a quad polarization SLC stack from the
NASA Jet Lab UAV SAR mission and extracts the Pauli
representation from the four polarizations.

1 import numpy as np
2 import torchcvnn
3 from torchcvnn.datasets.slc.dataset import

SLCDataset
4

5 def get_pauli(data):
6 # Returns Pauli in (H, W, C)
7 HH = data["HH"]
8 HV = data["HV"]
9 VH = data["VH"]

10 VV = data["VV"]
11

12 alpha = HH + VV
13 beta = HH - VV
14 gamma = HV + VH
15

16 return np.stack([beta, gamma, alpha], axis=-1)
17

18

19 patch_size = (3000, 3000)
20 dataset = SLCDataset(
21 rootdir,

a) ALOS2 b) SLC

c) PolSF d) Bretigny

e) SAMPLE f) CineMRI

Fig. 1: Several datasets can be loaded with torchcvnn
with data from remote sensing and MRI and for different
tasks (classification or semantic segmentation). Unlabeled data
in ALOS2 or SLC format can be loaded (a, b) as well
as labeled data such as the PolSF (c) or Bretigny datasets.
For the segmentation datasets, only one of the polarizations
is displayed in magnitude (dB) with the labels overlaid. e)
Classification dataset SAMPLE of 10 targets. f) An example
of high (top) and low (bottom) resolution cardiac MRI images
with a subsampling of the k-space using an acceleration factor
of 8.

22 transform=get_pauli,
23 patch_size=patch_size,
24)

Listing 1: Example for loading a SLC stack and computing
the Pauli representation of it.

B. Activation functions

Several activation functions have been proposed in the liter-
ature. Split activation functions consist of a real-valued activa-

tion function applied independently to the real and imaginary
components. They are implemented in torchcvnn with the
generic class IndependentRealImag parameterized by
the activation function to be applied. Fully complex activation
functions jointly operate on complex numbers’ real and imagi-
nary components. Several activation functions are provided by
torchcvnn such as CReLU, CPReLU, CSigmoid, zReLU,
modReLU, Cardioid, Modulus, etc.

C. Initialization functions

Initialization of the neural networks is what triggered the
revival of neural networks in the early 2000s with the design
of pretraining algorithms (e.g., greedy layerwise pretraining)
before the latter definition of appropriate initialization schemes
such as the Glorot or He initializations. The performance
of deep neural network training is critically dependent on
them. The variance of the initialization schemes must be
adapted for complex-valued neural networks, as shown in [10].
In torchcvnn, we follow the insights from [10]. Namely,
for the Glorot Uniform/Normal and He Uniform/Normal, the
bias is always initialized to 0.0, and the real and imaginary
part of weights are generated randomly following the same
distributions given by Equations (1)-(4):

Glorot Uniform : U

[
−

√
3√

fanin + fanout
,

√
3√

fanin + fanout

]
(1)

Glorot Normal : N
(
0,

1√
fanin + fanout

)
(2)

He Uniform w ∼ U

[
−

√
3√

fanin
,

√
3√

fanin

]
(3)

He Normal w ∼ N
(
0,

1√
fanin

)
(4)

where fanin and the fanout denote respectively the number of
inward connections and outward connections of a unit. Note
that there is a factor 1√

2
compared to real-valued initializers

in terms of standard deviation. The main reason is for any
random variable Z = X+jY with independent and identically
distributed real and imaginary parts, Var(Z) = Var(X) +
Var(Y) = 2Var(X), so the above factor maintains a unitary
variance of the weights in the complex domain.

D. Normalization layers

Several normalization layers have been proposed in the
literature. In [11], authors introduced batch normalization and
demonstrated its efficiency in speeding up training by limiting
the influence of early layers modifications on deep layers
activations. The implementation in torchcvnn follows the
adaptation to complex layers in [10] as given by Equation (5).
It formulates complex batch normalization of scalars as the
real-valued batch normalization of 2D vectors. This normal-
ization and scaling is applied to every neuron of a layer by
computing the empirical statistics, the mean vector µ(x) and

the covariance matrix Γ(x) from the total summed inputs of
the neuron over a minibatch of samples:

x̃ = (Γ (x) + ε I)
− 1

2 (x− µ(x)) ,

x̂ = Λ x̃+ β , (5)

where ε is a regularization term to ensure the invertibility
of Γ(x) and where the trainable parameters are the complex
offset β and 2× 2 real-valued matrix Λ.
Experimentally, we observed failure cases when using batch
normalization with complex-valued neural networks. The ac-
tivations may blow up when using the running average of the
statistics, as is usual in evaluation mode. Our current guess
is that this happens when the averaged covariance is close to
degenerate.

In addition to batch normalization, other normalization
layers such as Layer Norm [12] and RMS Norm [13] were
introduced. Their implementation with complex tensors is very
similar to batch normalization. The difference between batch
normalization and layer normalization is that batch normaliza-
tion computes its standardization statistics from the summed
inputs to a unit over a mini-batch of samples. In contrast, the
layer norm computes its statistics from the summed inputs
of a layer’s units for a single sample. RMSNorm is similar
to LayerNorm, except it does not center its inputs, as given
by Equation (6). It was shown in [13] that this centering
can be removed, lowering the computational footprint without
degrading the performances:

x̃ = (Γ (x) + ε I)
− 1

2 x ,

x̂ = Λ x̃ . (6)

E. Pooling layers

Pooling layers were introduced in neural networks to spa-
tially compress the representations and hopefully learn trans-
lation invariant representations. There are several possibilities
to pool representations. Historical pooling layers are provided,
such as average pooling and max pooling. For the max
pooling, the max operation is computed from the module of
the activations in the neuron’s receptive fields. Pooling can
also be performed following [14] with strided convolutions,
as is now commonly applied.

F. Attention layers

Transformers were recently introduced in [15] for sequence
processing, and extended to vision tasks with Vision Trans-
formers (ViT) [16]. The extension to complex-valued tensors
requires the adaptation of the multi-head attention layer. One
head of the attention layer computes queries Q, keys K,
and values V for input made of multiple tokens. With the
real-valued neural network, for every token, the scaled dot
product between its query Q and the keys K of all the tokens,
normalized by a softmax, determines weights to ponderate the
values V. In [17], it is suggested to replace the real-valued

scaled dot product with the real part of the scaled complex-
valued dot product as given by Equation (7) :

CAtt(Q,K,V) = softmax

Re
(
QKH

)
√
d

 V . (7)

In this equation, the keys, queries and values computed for
each token (or patch in a case of a ViT) are stacked in the rows
of the matrices K,Q,V, the softmax is applied on every rows
independently and d corresponds to the embedding size of Q
and K. With the complex-valued dot product, the similarity
between the queries and keys is proportional to their phase
difference. With the complex-valued multi-head attention, one
can implement complex-valued transformers and ViTs.

G. Models
There are two possibilities for building standard architec-

tures with their complex-valued flavor. As shown in sec-
tion III-A, one can benefit from real-valued neural networks
and patch them to replace real layers with complex layers.
Other models, such as ViT, are implemented directly within
torchcvnn. Various scaled ViT are easily accessible with a
few lines of code, as shown in Listing 2. In this example, the
patch embedding module is a fully connected layer surrounded
by RMSNorm layers. Using a convolutional layer in this
example is a simple trick to split the input image into non-
overlapping patches.

1

2 import torch.nn as nn
3 import torchcvnn.nn as c_nn
4 import torchcvnn.models as c_models
5

6 patch_embedder = nn.Sequential(
7 c_nn.RMSNorm([cin, height, width]),
8 nn.Conv2d(
9 cin,

10 hidden_dim,
11 kernel_size=patch_size,
12 stride=patch_size,
13 dtype=torch.complex64,
14),
15 c_nn.RMSNorm([hidden_dim, height // patch_size,

width // patch_size]),
16)
17

18 vit_model = c_models.vit_b(patch_embedder)
19 # X is a torch tensor of dtype complex64
20 # and shape (B, C, H, W)
21 out = vit_model(X)
22 # out is of dtype complex64
23 # and shape
24 # [B, hidden_dim, H//patch_size, W//patch_size]

Listing 2: Scaled ViT can be easily created with torchcvnn
given a patch embedding neural network

Several scaled ViT are proposed with the hyperparameters
given in table I. All of them use RMSNorm for the normal-
ization layers.

III. SHOWCASING TORCHCVNN WITH STATE OF THE ART
COMPLEX-VALUED NEURAL NETWORKS

This section presents different use cases of torchcvnn.
These examples highlight different facets of torchcvnn.

Name # Layers # Heads Hidden dim FFN dim
vit t 12 3 192 768
vit s 12 6 384 1563
vit b 12 12 768 3072
vit l 24 16 1024 4096
vit h 32 16 1280 5120

TABLE I: Parameters of predefined scaled ViTs, mirroring
standard structures of real-valued VITs.

Class A04 A05 A07 A10
Samples 573 573 573 567

Class A32 A62 A63 A64
Samples 572 573 573 1417

Class BTR 60 2S1 BRDM 2 D7
Samples 451 1164 1415 573

Class SLICY T62 ZIL131 ZSU 23 4
Samples 2539 572 573 1401

TABLE II: MSTAR dataset class names and samples per class.

In subsection III-A, we show how to implement complex-
valued neural networks either by “patching” real-valued neural
networks, replacing real-valued building blocks with complex-
valued counterparts, or using state-of-the-art models such as
Vision Transformers [16], using the complex-valued multi-
head attention of [17]. In subsection III-B, we consider an
encoder/decoder architecture for reconstructing remote sens-
ing data. This encoder/decoder example is further refined in
section III-C, where a complex-valued UNet is used for a
semantic segmentation task of SAR images. Finally, in subsec-
tion III-D, we show how torchcvnn can help implement an
Implicit Neural Representation in the context of cardiac MRI
reconstruction.

A. Image classification with Complex-valued Neural Networks
and Vision Transformers

Experimental datasets: In the field of Synthetic Aperture
Radar (SAR), the MSTAR (Moving and Stationary Target
Acquisition and Recognition) [18] dataset is a standard re-
source for SAR image analysis. MSTAR is widely used in
remote sensing imaging research, and is developed and pub-
licly released by the US Defense Advanced Research Projects
Agency (DARPA). The dataset includes complex-valued SAR
images of various military vehicles, such as tanks, armored
carriers, trucks, or utility conveyances. Images are taken by the
Sandia X-band SAR platforms in spotlight mode, providing a
one-foot range resolution. Targets are captured from multiple
azimuth angles, from 0◦ to 360◦. The number of classes and
distribution of samples per class are given in table II. Note
this dataset is slightly unbalanced.

Data preprocessing: Note that the image size of MSTAR
dataset vary from 54 × 54 to 193 × 193. All the images
have been resized by either zero-padding or center-cropping
their Discrete Fourier Transform. The magnitudes have been
converted to dB keeping the phase unchanged. The data are
split in 80% for training and 20% for testing.

Models # Layers # Heads Hidden dim
ViT 3 8 128

Conv-ViT 3 8 256

TABLE III: Two ViT architectures are tested. For the Conv-
ViT, the input tensor goes through a Convolutional stem which
is made of two Conv-BN-modRelu blocks.

Models: To construct state-of-the-art complex-valued vision
neural networks, one can use already implemented real-valued
neural networks and ”patch them” in order to replace real-
valued modules by their complex-valued counterparts. A wide
range of models are available either built in torchvision or with
external librairies such as Timm [19]. The Listing 3 illustrates
how to convert a real-valued network into a complex-valued
network by patching it.

Another approach is obviously to implement your own
neural network. As explained in section II-G, torchcvnn
provides several scaled ViTs which are getting popular in
recent years to address computer vision problems. While
vanilla Vision Transformers deliver remarkable performances
on large-scale datasets, the lack of inductive bias prone them
to easily and rapidly overfit on smaller datasets. We have
designed a complex-valued lightweight ViT for better fitting
on the MSTAR dataset with 3 layers, 8 attentional heads with
hidden dimension of either 128 or 256 (see Table III). In these
experiments, we considered two variations denoted as ViT and
Conv-ViT where the Conv-ViT involves a convolutional block
before applying the ViT.

Training details: Training is performed with AdamW with
a learning rate of 0.003, a weight decay of 0.05 for the
ResNet and 0.03 for the ViT. The learning rate is halved if
the validation loss is not improved over 8 epochs. Batch size
is 64 for the ResNet and 128 for the ViT. For both baseline
ViTs and hybrid-ViTs models, input images are divided into
16x16 patches.

Results: Our best ViT involves the convolutional stem (see
Table IV) and achieves 91% of top-1 accuracy. Overall, the
patched ResNet-18 performs better compared to the ViTs
but further experiments may identify better hyperparameters
allowing the ViTs to be more competitive. It is also pos-
sible that MSTAR is too small to prevent the ViTs from
overfitting. We also tested several input image sizes. The
performances of ResNet-18 did not improve significantly with
sizes larger than 128 × 128. However, the ViT performances
improved by resizing the images to 208 × 208. The code is
available at https://github.com/torchcvnn/examples/tree/main/
mstar classification.

1

2 import torch.nn as nn
3 import torchcvnn.nn as c_nn
4 from torchvision.models import resnet18
5

6 def convert_to_complex(module: nn.Module) -> nn.
Module:

7 cdtype = torch.complex64
8 for name, child in module.named_children():
9 if isinstance(child, nn.Conv2d):

Models Params Inp. size Top-1 Acc. Top-5 Acc
ResNet-18 11.2M 128 99.8% 100%

ViT 110K 128 81.2% 99.3%
ViT 116K 208 89.8% 99.8%

Conv-ViT 695K 128 87.5% 99.7%
Conv-ViT 709K 208 91.1% 99.8%

TABLE IV: Experimental training results. Models details are
in Table III.

10 setattr(
11 module,
12 name,
13 nn.Conv2d(
14 child.in_channels,
15 child.out_channels,
16 child.kernel_size,
17 stride=child.stride,
18 padding=child.padding,
19 bias=child.bias is not None,
20 dtype=cdtype,
21),
22)
23 elif isinstance(child, nn.ReLU):
24 setattr(module, name, c_nn.modReLU())
25 elif isinstance(child, nn.BatchNorm2d):
26 setattr(module, name, c_nn.BatchNorm2d(

child.num_features))
27
28 else:
29 convert_to_complex(child)
30

31 complex_valued_model = convert_to_complex(resnet18()
)

Listing 3: Example function for patching a real-valued into a
complex-valued neural network with torchcvnn

B. Remote sensing reconstruction with complex-valued auto-
encoder

The example of this section is a replicate of [8]. Complex-
valued neural networks are widely used to process complex-
valued data, especially when the phase information carries
valuable information. In the case of polarimetric SAR imaging,
the polarization properties of electromagnetic waves are used
to measure the polarimetric properties of scatterers, using both
amplitude and phase information. A complex scattering matrix
is acquired for each pixels of the image:

S =

(
SHH SV H
SHV SV V

)
, (8)

by considering the horizontal and vertical polarization basis.
Thus, a PolSAR image is a complex-valued tensor ∈ C4×h×w

where h,w are the image height and width.
From this scattering matrix, various decompositions have
been proposed. Coherent decompositions, like Pauli [20] and
Krogager [21]–[23], rely on the expression of S as a combina-
tion of the backscattering mechanisms response of canonical
objects. On the other hand, non-coherent decompositions, like
H −α [24], a covariance matrix is estimated locally for each
pixel to analyze random scattering effects better.
Gabot et al. [8] demonstrated that polarimetric properties were

https://github.com/torchcvnn/examples/tree/main/mstar_classification
https://github.com/torchcvnn/examples/tree/main/mstar_classification

mainly preserved after a complex-valued AutoEncoder recon-
struction process. They notably showed good performances
in the confusion matrix between original and reconstructed
H − α classes, as seen in Figures 2 and 3. A complex-
valued auto-encoder requires both the down and up sampling
blocks. As shown ni Listing 4, implementing these blocks with
torchcvnn is straighforward by combining the complex-
valued convolution layers already implemented by PyTorch
and adding the torchcvnn normalization and activation
layers.

1

2 import torch
3 import torchcvnn.nn as c_nn
4

5 def up(cin, cmid, cout, dtype=torch.complex64):
6 conv_params = {"kernel_size": 3, "padding": 1}
7 return nn.Sequential([
8 nn.Conv2d(cin, cmid, stride=2,
9 **conv_params, dtype=dtype),

10 c_nn.BatchNorm(cmid),
11 c_nn.modReLU(),
12 nn.Conv2d(cmid, cout, stride=1,
13 **conv_params, dtype=dtype),
14 c_nn.BatchNorm(cout),
15 c_nn.modReLU(),
16])
17

18 def down(cin, cout):
19 conv_params = {"kernel_size": 3,
20 "padding": 1,
21 "stride": 1}
22 return nn.Sequential([
23 c_nn.ConvTranspose2d(
24 cin, cout, kernel_size=2, stride=2
25),
26 nn.Conv2d(cout, cout,
27 **conv_params, dtype=dtype),
28 c_nn.BatchNorm(cout),
29 c_nn.modReLU(),
30 nn.Conv2d(cout, cout,
31 **conv_params, dtype=dtype),
32 c_nn.BatchNorm(cout),
33 c_nn.modReLU(),
34])

Listing 4: Example autoencoder down- and up- scaling
modules with torchcvnn

C. Semantic segmentation with complex-valued U-Net

Semantic segmentation is a significant task in computer
vision, even when considering complex-valued data like SAR
imaging. The assignment of each pixel to a certain class is
usually achieved with the use of the U-Net architecture [25]
or one of its many variants [26]–[28]. Most of these models
have been extended to the complex domain for semantic
segmentation of SAR images. Barrachina et al. proposed an
implementation of a complex-valued U-Net in [29] on the
PolSF dataset. In contrast, Wang et al. [30] implemented
a complex-valued U-Net to suppress nonhomogeneous sea
clutter.
In this section, we showcase the performances of a custom
complex-valued UNet using torchcvnn. The different parts
of the model (convolutional layers, convolutional transpose
layers, activation functions) have been designed using the

Fig. 2: Images of the original (left) and reconstructed (right)
images with the H − α classification.

Fig. 3: Confusion matrix of the original (rows) and recon-
structed (columns) H − α classes.

library, while the training and evaluation have been made
on the integrated PolSF dataset. Examples codes for the
upsampling and downsampling modules are given in Listing 4.
The model uses the modReLu activation function. The encoder
is built from 5 modules, each being composed of residual
blocks with two stacked Conv-BatchNorm-modReLU using
a kernel size of 3. The decoder is built from a sequence
of 5 modules, each being composed of an upsampling, a
concatenation of the corresponding encoder features, followed
by the same residual blocks sequence as the encoder. The
model has a total of 52 million trainable parameters. The
model has been trained on a segmentation task, using a custom
Focal loss implementation with AdamW with a learning rate
ϵ = 0.001 and a weight decay of 0.005. The learning rate is
adapted with a cosine annealing with warm restart strategy.
We obtained performances that were close to state-of-the-art,
as displayed in Figure 4 & 5.

D. Complex-Valued Implicit Neural Representations

In this section, we present the use of complex-valued neural
networks for implicit neural representations applied to cardiac
reconstruction following [5]. The code for this example is

(a) (b)

Fig. 4: Images of the ground truth (a) and predicted (b)
segmentation map. Each of the 6 classes is represented with its
own color, black pixels belonging to the ”unlabeled” class. A
mask is applied on the predicted segmentation map to replicate
the ”unlabeled” class.

Fig. 5: Confusion matrix of the ground truth (rows) and
predicted (columns) classes over the labeled classes.

available at https://github.com/torchcvnn/examples/tree/main/
nir cinejense.

The Implicit Neural Representation (INR) approach has
recently emerged as a powerful technique for approximating
functions in various fields [31]. It is based on the optimization
of a function fθ(z) that can be queried at some coordinates
z and is parametrized by θ. The coordinates can be arbitrary,
for example, two-dimensional when interpolating images [32],
and three-dimensional when interpolating a volume [33].

Let us briefly introduce the context of cardiac image re-
construction before explaining how torchcvnn helps to
reproduce the work [5]. Cardiac magnetic resonance imaging
(CMR) is a non-invasive imaging technique that allows the
heart to be observed through time. One difficulty is the slow
speed of the process, which leads to patient discomfort and
motion artifacts. If imaging is carried out for an extended
period, the resolution of the heart is better. Hence, the chal-
lenge is to shorten the observation while still being able to

interpolate the heart with a high resolution. This question is the
aim of the CMRxRecon challenge https://cmrxrecon.github.io
hosted in the context of the International Conference on
Medical Image Computing and Computer Assisted Interven-
tion, MICCAI 2023. In this challenge, the heart’s Fourier
representation (so-called k-space) is partially observed, and
the task is to reconstruct it fully. Bands subsample the Fourier
representation, and depending on the acceleration factor (4,
8, or 10), more or fewer frequency bands of the signals are
provided. The illustrations of the subsampled k-space and the
resulting heart images are given in Figure 6 alongside the fully
sampled k-space and full-resolution image.

a) b)

c) d)

Fig. 6: a) Fully sampled k-space of a specific slice, coil
and frame. The k-space is plotted in dB. b) Reconstructed
heart image using the root sum of squares of the inverse
Fourier transform of each coil. c) Subsampling mask for an
acceleration factor of 10. d) Reconstructed heart image using
the root sum of squares of the inverse Fourier transform of the
subsampled k-spaces of each coil.

Several approaches can be considered to address this chal-
lenge, as presented during the MICCAI 2023 conference [34].
We selected the approach of [5] to showcase how to use
torchcvnn to train complex-valued INR. The approach
of CineJENSE [5] is a 2D+t extension of the earlier work
IMJENSE of [35], which introduced INR for cardiac image
reconstruction. Borrowing the notations from [5], MR imaging
reconstruction aims to find the image I ∈ CNx×Ny from the
partially observed k-space K ∈ CNx×Ny×Nc , where Nx×Ny
denotes the image dimensions and Nc the number of coils used
for the imaging. The link between the image space and the k-
space is through the operator F(.), involving the sensitivities
of the coils, the Fourier transform F , and a subsampling mask
of the k-space. The reconstruction is there formulated as the
minimization problem (9):

min
I,S

∥F(I)−K∥22 + λI R(I) + λS R(S) , (9)

where R(I) and R(S) are two regularization terms, respec-
tively, on the image I and the sensitivity maps S and their
regulation parameters λI and λS . The input coordinates of
the INR are 2D+t spatiotemporal (x, y, t). Although earlier
works on INR directly used the raw coordinates as inputs to
the neural networks, later research proposed other schemes

https://github.com/torchcvnn/examples/tree/main/nir_cinejense
https://github.com/torchcvnn/examples/tree/main/nir_cinejense
https://cmrxrecon.github.io

with improved performances. Notably, [32] introduced a multi-
resolution hash encoding scheme, which is involved before
feeding the coordinates into a multi-layer feedforward neural
network. In the current implementation, the tiny-cuda-nn [36]
implementation is used. It outputs real-valued embeddings that
are then fed into a complex-valued neural network. In a future
release, torchcvnn will support complex-valued encodings.

Two INR networks are trained, one for the image at instant
t ∈ [0, T − 1], denoted Itθ(x, y) and one for the coil’s sensi-
tivity, denoted St,cψ (x, y). The output of these two networks
is multiplied to obtain the multi-coil k-space Kt,c

θ,ψ. As stated
earlier, the multi-coil k-space is not fully observed, and only a
fraction of it is provided; this fraction is defined by the binary
mask M. To estimate the parameters θ and ψ, the criterion
to be minimized combining all these elements, is then defined
as:(
θ̂, ψ̂

)
= argmin

θ,ψ

1

NcT

T−1
Nc−1∑
c=0
t=0

Lδ

(
M⊙F

(
Itθ ⊙ St,cψ

)
,Kt,c

)
+λ∥∇It,cθ ∥1 , (10)

where λ is a regularization parameter and Lδ is the Huber
loss [37] with the threshold δ = 1. The first term of (10) is
the minimization between the predicted and observed k-space,
while the second term is the total variation loss in the image
space acting as a regularizer. Minimizing the loss has the joint
consequence of optimizing the image and the sensitivity maps.
During inference, the predictions of the two neural networks
are used to fill in only the unobserved components of the k-
space. The final reconstructed image Ît, at time t, combining
all the Nc coils, hence reads:

Ît =

Nc−1∑
c=0

S
t,c

ψ ⊙F−1
(
(1−M)⊙F

(
It
θ̂
⊙ St,c

ψ̂

)
+M⊙Kt,c

)
.

(11)
The reconstruction quality is evaluated with the Peak Signal-

to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM). The
models were trained for 256 iterations for the experiments
reported in this article, optimized with Adam and learning
rate ϵ = 0.01. The total variation regularization factor is set to
λ = 4.0. The parameters for the two hash grids are the same
as in [5]. The two feedforward neural networks have 4 hidden
layers with modReLU activation.

The performances obtained are provided in Tables V-VII
for the three acceleration factors and two views (SAX/LAX).
They are comparable to [5], although slightly better than those
reported in the paper by the authors. These metrics involve all
the 109 data for the SAX view and 94 for the LAX view. There
are no separate train/valid folds because the INR is trained
individually for every sample. Hence, the metrics reported in
Tables V-VII are real risk estimates. The zero filled baseline is
computed by setting to 0 the unobserved parts of the k-space.

IV. PERSPECTIVES

The keen interest in deep learning has fueled the scientific
community with an ever-growing number of new tasks and

View Method SSIM PSNR (db)
SAX Zero Filled 0.83± 0.04 29.42± 1.49

CineJENSE 0.96± 0.01 42.19± 2..13
LAX Zero Filled 0.81± 0.03 28.47± 1.59

CineJENSE 0.97± 0.01 42.93± 1.72

TABLE V: Performance for acceleration factor R = 4.

View Method SSIM PSNR (db)
SAX Zero Filled 0.81± 0.04 28.50± 1.62

CineJENSE 0.89± 0.02 35.61± 1.67
LAX Zero Filled 0.80± 0.04 27.73± 1.59

CineJENSE 0.90± 0.02 35.43± 1.82

TABLE VI: Performance for acceleration factor R = 8.

View Method SSIM PSNR (db)
SAX Zero Filled 0.81± 0.04 28.24± 1.59

CineJENSE 0.88± 0.02 34.35± 1.62
LAX Zero Filled 0.79± 0.03 27.52± 1.62

CineJENSE 0.89± 0.02 34.42± 1.62

TABLE VII: Performance for acceleration factor R = 10.

methods. Open source initiatives like PyTorch have played
a crucial role in democratizing deep learning by proposing
frameworks, datasets, and pre-trained models. This approach
relies on the active participation of the scientific commu-
nity, from the conception of new methods to their actual
implementation. In this article, we showcased torchcvnn,
an open-source framework for complex-valued deep learning
inspired by the PyTorch initiative. torchcvnn proposes
various modules and datasets for the community to use in
their experiments. We have notably highlighted how some
crucial parts of complex-valued neural networks are imple-
mented (activation functions, attention layers, normalization
layers) while presenting the available complex-valued datasets
(ALOS2, SAMPLE, MRI). To demonstrate the capacities of
torchcvnn, we have illustrated some applications on various
key tasks (classification, segmentation, reconstruction), using
the library to build, train, and evaluate the model. Indeed,
torchcvnn eases the design of new complex-valued neural
networks, as well as extend SOTA models (CNN, ViT, NIR)
to the complex case. We plan to add several datasets (S1SLC,
fastMRI), as well as complex-valued embeddings (ROPE, hash
encoding) and transfer functions (elementary transcendental
functions). In addition, several applications could benefit from
torchcvnn as the backbone of their implementations. Fi-
nally, increasing contributions are expected in the hope of
establishing an active open-source community.

REFERENCES

[1] A. Hirose, ”Complex-Valued Neural Networks”. Springer, 2012.
[2] Y. Cao, Y. Wu, P. Zhang, W. Liang, and M. Li, “Pixel-wise PolSAR

image classification via a novel complex-valued deep fully convolutional
network,” Remote Sensing, vol. 11, no. 22, p. 2653, 2019.

[3] J. Zhao, M. Datcu, Z. Zhang, H. Xiong, and W. Yu, “Contrastive-
regulated CNN in the complex domain: A method to learn physical
scattering signatures from flexible PolSAR images,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 10 116–10 135,
2019.

[4] V. Dhédin, J. Levi, J. Fix, C. Ren, and I. Hinostroza, “Complex-valued
wasserstein gan for sar image generation,” in IGARSS 2024 - 2024 IEEE
International Geoscience and Remote Sensing Symposium, 2024, pp.
6991–6996.

[5] Z. Al-Haj Hemidi, N. Vogt, L. Quillien, C. Weihsbach, M. P. Heinrich,
and J. Oster, “Cinejense: Simultaneous cine MRI image reconstruction
and sensitivity map estimation using neural representations,” in Statisti-
cal Atlases and Computational Models of the Heart. Regular and CM-
RxRecon Challenge Papers, O. Camara, E. Puyol-Antón, M. Sermesant,
A. Suinesiaputra, Q. Tao, C. Wang, and A. Young, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 467–478.

[6] D. P. Reichert and T. Serre, “Neuronal synchrony in complex-valued
deep networks,” 2014. [Online]. Available: https://arxiv.org/abs/1312.
6115

[7] S. Löwe, P. Lippe, M. Rudolph, and M. Welling, “Complex-valued
autoencoders for object discovery,” Transactions on Machine Learning
Research, 2022. [Online]. Available: https://openreview.net/forum?id=
1PfcmFTXoa

[8] Q. Gabot, J. Fix, J. Frontera-Pons, C. Ren, and J.-P. Ovarlez,
“Preserving polarimetric properties in PolSAR image reconstruction
through Complex-Valued Auto-Encoders,” in RADAR 2024, Rennes,
France, Oct. 2024. [Online]. Available: https://hal.science/hal-04785702

[9] J. A. Barrachina, C. Ren, G. Vieillard, C. Morisseau, and J.-P. Ovarlez,
“Theory and implementation of complex-valued neural networks,”
2023. [Online]. Available: https://arxiv.org/abs/2302.08286

[10] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian,
J. F. Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal,
“Deep complex networks,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=H1T2hmZAb

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds.,
vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 448–456. [Online].
Available: https://proceedings.mlr.press/v37/ioffe15.html

[12] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.
[Online]. Available: https://arxiv.org/abs/1607.06450

[13] B. Zhang and R. Sennrich, “Root Mean Square Layer Normalization,”
in Advances in Neural Information Processing Systems 32, Vancouver,
Canada, 2019. [Online]. Available: https://openreview.net/references/
pdf?id=S1qBAf6rr

[14] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in International Conference
on Learning Representations, 2015.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 6000–6010.

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[17] F. Eilers and X. Jiang, “Building blocks for a complex-valued trans-
former architecture,” in ICASSP 2023 - 2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2023,
pp. 1–5.

[18] J. R. Diemunsch and J. Wissinger, “Moving and stationary target
acquisition and recognition (MSTAR) model-based automatic target
recognition: Search technology for a robust ATR,” in Algorithms for
synthetic aperture radar Imagery V, vol. 3370. SPIE, 1998, pp. 481–
492.

[19] R. Wightman, N. Raw, A. Soare, A. Arora, C. Ha, C. Reich,
F. Guan, J. Kaczmarzyk, mrT23, Mike, SeeFun, contrastive, M. Rizin,
H. Kim, C. Kertész, D. Mehta, G. Cucurull, K. Singh, hankyul,
Y. Tatsunami, A. Lavin, J. Zhuang, M. Hollemans, M. Rashad,
S. Sameni, V. Shults, Lucain, X. Wang, Y. Kwon, and Y. Uchida,
“rwightman/pytorch-image-models: v0.8.10dev0 release,” Feb. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.7618837

[20] V. Alberga, E. Krogager, M. Chandra, and G. Wanielik, “Potential of
coherent decompositions in SAR polarimetry and interferometry,” in

IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing
Symposium, vol. 3. IEEE, 2004, pp. 1792–1795.

[21] E. Krogager, “Utilization and interpretation of polarimetric data in high
resolution radar target imaging,” in Proc. Second International Workshop
on Radar Polarimetry (JIPR’1992), vol. 2, Nantes, France, Sep. 8–10,
1992, pp. 547–557.

[22] E. Krogager and Z. H. Czyz, “Properties of the sphere, diplane,
helix decomposition,” in Proc. Third International Workshop on Radar
Polarimetry (JIPR’1995), vol. 1, Nantes, France, Mar. 21–23, 1995, pp.
106–114.

[23] E. Krogager, J. Dall, and S. N. Madsen, “The sphere, diplane, helix
decomposition recent results with polarimetric SAR data,” in Proc.
Third International Workshop on Radar Polarimetry (JIPR’1995), vol. 2,
Nantes, France, Mar. 21–23, 1995, pp. 621–625.

[24] P. Formont, F. Pascal, G. Vasile, J.-P. Ovarlez, and L. Ferro-Famil,
“Statistical classification for heterogeneous polarimetric SAR images,”
IEEE Journal of selected topics in Signal Processing, vol. 5, no. 3, pp.
567–576, 2010.

[25] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international con-
ference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.
Springer, 2015, pp. 234–241.

[26] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa,
K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., “Atten-
tion u-net: Learning where to look for the pancreas,” arXiv preprint
arXiv:1804.03999, 2018.

[27] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari,
“Recurrent residual convolutional neural network based on u-net (r2u-
net) for medical image segmentation,” arXiv preprint arXiv:1802.06955,
2018.

[28] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2017, pp. 11–19.

[29] J. A. Barrachina, C. Ren, G. Vieillard, C. Morisseau, and J.-P. Ovarlez,
“Real-and complex-valued neural networks for SAR image segmentation
through different polarimetric representations,” in 2022 IEEE Interna-
tional Conference on Image Processing (ICIP). IEEE, 2022, pp. 1456–
1460.

[30] Y. Wang, W. Zhao, X. Wang, J. Chen, H. Li, and G. Cui, “Nonhomoge-
neous sea clutter suppression using complex-valued u-net model,” IEEE
Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[31] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari,
J. Tompkin, V. Sitzmann, and S. Sridhar, “Neural fields in visual
computing and beyond,” Computer Graphics Forum, 2022.

[32] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022. [Online]. Available:
https://doi.org/10.1145/3528223.3530127

[33] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: representing scenes as neural radiance fields for
view synthesis,” Commun. ACM, vol. 65, no. 1, p. 99–106, Dec. 2021.
[Online]. Available: https://doi.org/10.1145/3503250

[34] O. Camara, E. Puyol-Antón, M. Sermesant, A. Suinesiaputra,
Q. Tao, C. Wang, and A. A. Young, Eds., Statistical Atlases
and Computational Models of the Heart. Regular and CMRxRecon
Challenge Papers - 14th International Workshop, STACOM 2023,
Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada,
October 12, 2023, Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 14507. Springer, 2024. [Online]. Available:
https://doi.org/10.1007/978-3-031-52448-6

[35] R. Feng, Q. Wu, J. Feng, H. She, C. Liu, Y. Zhang, and H. Wei, “Imjense:
Scan-specific implicit representation for joint coil sensitivity and image
estimation in parallel MRI,” IEEE Transactions on Medical Imaging,
vol. 43, no. 4, pp. 1539–1553, 2023.

[36] T. Müller, “tiny-cuda-nn,” April 2021. [Online]. Available: https:
//github.com/NVlabs/tiny-cuda-nn

[37] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals
of Mathematical Statistics, vol. 35, no. 1, pp. 73 – 101, 1964. [Online].
Available: https://doi.org/10.1214/aoms/1177703732

https://arxiv.org/abs/1312.6115
https://arxiv.org/abs/1312.6115
https://openreview.net/forum?id=1PfcmFTXoa
https://openreview.net/forum?id=1PfcmFTXoa
https://hal.science/hal-04785702
https://arxiv.org/abs/2302.08286
https://openreview.net/forum?id=H1T2hmZAb
https://openreview.net/forum?id=H1T2hmZAb
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1607.06450
https://openreview.net/references/pdf?id=S1qBAf6rr
https://openreview.net/references/pdf?id=S1qBAf6rr
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.5281/zenodo.7618837
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3503250
https://doi.org/10.1007/978-3-031-52448-6
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1214/aoms/1177703732

	Introduction
	The components of torchcvnn
	Datasets
	Activation functions
	Initialization functions
	Normalization layers
	Pooling layers
	Attention layers
	Models

	Showcasing torchcvnn with state of the art Complex-Valued Neural Networks
	Image classification with Complex-valued Neural Networks and Vision Transformers
	Remote sensing reconstruction with complex-valued auto-encoder
	Semantic segmentation with complex-valued U-Net
	Complex-Valued Implicit Neural Representations

	Perspectives
	References

