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Abstract—While recent deep learning methods have shown
promising results for SAR imagery and anomaly detection, their
performance remains constrained by real-valued architectures
that discard phase information. In this paper, we evaluate the per-
formance of a complex-valued Variational AutoEncoder (VAE)
for unsupervised SAR anomaly detection. The model learns
the SAR anomaly-free data distribution and detects anomalies
through reconstruction errors, further enhanced using a covari-
ance matrix-based change detector. Experiments conducted on
X-band ONERA polarimetric SAR imagery and synthetic data
demonstrate improved anomaly detection performance compared
to the classical Reed—Xiaoli detector, particularly in challenging
scenarios involving heterogeneous speckle and low signal-to-
clutter ratio.

Index Terms—Anomaly detection, SAR Variational AutoEn-
coder, Complex-Valued Neural Networks

I. INTRODUCTION

Interest in spaceborne and airborne remote sensing has
grown substantially, driven by the deployment of numerous
satellite missions (e.g., Sentinel series, and more recently
Biomass) and the advancement of airborne platforms such as
UAVSAR. Among remote sensors, Synthetic Aperture Radar
(SAR) is particularly notable because it is an active system that
transmits electromagnetic pulses and records the backscattered
signals, thereby enabling continuous acquisition regardless
of weather conditions and solar illumination. Moreover, the
physical properties of commonly employed radar frequencies-
such as P-, L-, and X-bands- exhibit distinct penetration
behaviors, making SAR uniquely suited to a wide range of
applications.

Anomaly detection in SAR imagery has become a critical
research area, yet it presents several unique challenges. In mul-
tidimensional and complex-valued SAR signals, the presence
of speckle fluctuations causes many false alarms. Most impor-
tantly, anomalies are unknown in non-controlled environments,
rendering annotation difficult and costly. Consequently, despite
the abundance of SAR data, labeled examples remain scarce,
motivating the adoption of unsupervised methodologies and
self-supervised algorithms.

While Deep Learning has shown remarkable progress [1],
only a few researchers have tackled the problem of anomaly
detection in SAR imaging [2—7]. Most promising outcomes
are mainly based on two general methodologies: analyzing re-
construction errors in reconstruction or identifying outliers in a
low-dimensional embedding space [8]. A notable commonality

among these previous works is their reliance on real-valued
neural networks, which consider the magnitude of complex-
valued signals only. This inevitably discards important infor-
mation, since the phase component carries valuable details
about SAR diversity—such as polarimetric and interferometric
channels, or multi-band and multi-view representations—thus
leaving open the question of whether complex-valued archi-
tectures could better exploit the inherent properties of SAR
data.

Preliminary studies [9—11] have already highlighted the po-
tential benefits of complex-valued neural networks (CVNN5s)
in handling complex-valued signals; however, comprehensive
demonstrations and large-scale applications are still required
to establish their practical impact. Joining these efforts, we
investigate the application of CVNNs to the anomaly detec-
tion problem in SAR imagery by exploiting the Variational
AutoEncoder framework [12] in the complex domain [13].
The proposed architecture processes complex-valued inputs,
thereby exploiting the phase attribute. This design enhances
the quality of latent space representation, particularly in Po-
larimetric SAR (PolSAR), where phase information encodes
essential physical and geometrical properties.

Notations: Matrices are denoted by bold uppercase letters,
and vectors by bold lowercase letters. For any matrix A or
vector, A represents the Hermitian transpose of A. The
symbols ©® and © denote the Hadamard element-wise product
and division, respectively. For vectors, the operator ° is applied
element-wise (e.g., power, logarithm, modulus).

II. RELATED WORKS

Statistical anomaly detectors. The mathematical formula-
tion of the anomaly identification problem is presented below.
Traditional approaches have relied on the following two binary
hypothesis tests:
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where x; € C* denotes a full-polarimetric test pixel, which
may correspond either to a clutter pixel ¢ or to an anomalous
pixel ¢ + A p with unknown magnitude A and steering vector
p. All n pixels, C = (cy,ca,...,c,) € C**", constitute the
secondary data used to estimate the background covariance
matrix. The classical Generalized Likelihood Ratio framework
leads to the design of the well-known Reed-Xiaoli Detector
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Fig. 1: Architecture of a complex-valued Variational AutoEncoder, where X’ and X denote the original Single-Look complex

SAR image and its reconstructed version, respectively.

(RXD) [14, 15], which designs the Mahalanobis distance as a
point-to-distribution measure:
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where ﬁ]soM = ccH /n is the Sample Covariance Matrix
(SCM) computed on the secondary dataset.

Other classical statistical detectors defined in [16] and [17]
also exploit background covariance estimation to discriminate
anomalies or targets from clutter. However, the assumption of
Gaussianity increases their sensitivity to clutter heterogeneity
and limits their ability to capture complex spatial and
contextual information. Other alternatives have alleviated
these constraints, notably the Tyler estimator [18, 19, 15],
which provides a robust distribution-free estimation of the
covariance matrix, allowing effective modeling of heavy-tailed
and non-Gaussian backgrounds commonly encountered in
SAR imagery.

Deep learning reconstruction-based anomaly detector.
Recent efforts [4, 5, 2, 3] have established new benchmarks
in SAR anomaly detection by leveraging the rapid progress of
Deep Learning. In particular, Muzeau et.al. [2, 3] and Sinha
et.al. [5] employed variants of deep convolutional AutoEn-
coders to model background clutter distributions and quantify
anomalies through reconstruction errors, with Muzeau further
demonstrating that the inclusion of a despeckling step can
significantly reduce the probability of false alarms. In parallel,
Mabu [4] proposed an unsupervised Adversarial AutoEncoder
combined with a one-class SVM to identify anomalous in-
stances in the latent space. More recent works by Chauvin [6]
and Ibarra [7] extended this line of research by introducing
anomaly detection on public SAR datasets within the patch
distribution modeling framework PaDiM [20].

III. ANOMALY DETECTION IN COMPLEX-VALUED SAR
IMAGING

We leverage a variational autoencoder (VAE) extended to
the complex domain to process complex-valued data. Tra-
ditionally, two common approaches are used to train real-
valued neural networks on complex-valued inputs. The first
considers only the magnitude of the complex signals, thereby
discarding phase information and resulting in a lossy represen-
tation. The second, more pragmatic, approach stacks the real

and imaginary parts as separate channels; however, this may
break their underlying algebraic relationships and significantly
distort the original phase information during deep operations
such as convolutions or normalization. In contrast, employ-
ing dedicated complex-valued architectures enables efficient
processing while preserving the intrinsic magnitude—phase
relationships of the data [9—11].

A. Complex-Valued Variational AutoEncoder

Initially introduced by [12], VAEs belong to the family of
generative neural networks based on Deep Learning. They
aim to approximate the data distribution using a variational
Bayesian approach and can be seen equivalently as a regu-
larized AutoEncoder. Tailoring VAE to the complex domain
requires learning from potential non-circular data character-
ized by the covariance and pseudo-covariance matrices in the
Gaussian case. Several works [21, 13] have already studied
this adaptation; we thereby adopt their strategy to learn the
intrinsic representations of Single-Look Complex SAR data.
The overall complex-valued VAE architecture is illustrated in
Figure 1.

In real-valued VAEs, the latent variables z are typically
assumed to follow a standard Normal a priori distribution.
By analogy, in complex-valued VAEs, the latent vector z
is modeled using a complex circular Normal distribution

CN (0,1).

Complex-valued Encoder & Decoder: Let X' € C**hxw
be the four polarization channels of complex-valued SAR
with spatial dimensions height h and width w. Let X e
C**Pxw denote its reconstruction delivered by the complex-
valued VAE. In autoencoder-based architectures, the en-
coder spatially compresses X into a latent representation
z € (4. Each encoding block consists of two stacked
complex-valued Convolution—BatchN orm—Activation se-
quences, where the activation function is the phase-preserving
modReLU introduced in [22]:

modReLU(z) = ReLU(|z| + b) e/ #8() | 3)

For downsampling, instead of using Average Pooling or
magnitude-based Max Pooling operation, we adopt strided
convolutions for the first convolutional layer of each encoder
block, allowing the network to learn adaptive feature extraction



while better preserving the complex spatial structures of SAR
images.

Unlike real-valued VAEs, the encoder outputs three param-
eter vectors for the latent space of dimension g: the mean
p € C4, the covariance 0°? € RY7, and the pseudo-covariance
6 € C4. The latter provides additional flexibility for accurately
modeling the second-order structure of complex-valued input
data.

The decoder reconstructs the input image by mirroring
the encoder architecture and employing two stacked
Convolution—BatchNorm—modReLU layers per block.
Upsampling is performed using strided complex transposed
convolution layers. The final reconstructed image X s
obtained by applying a convolutional layer to the output of
the last decoder block.

Complex-valued reparameterization trick. We adopt the
reparameterization trick for complex-valued VAE, originally
introduced by Nakashika [13] and further extended in [21].
Specifically, the three complex-valued parameters p, o, d are
sampled as follows:
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and where €, ~ N(0,I), ¢, ~ N(0,I). The
pseudo-covariance is computed with § = a ©® o with
a=(a1,az,...,a0)T € CY|ay| < 1,Vi € [1,4].

Loss function. Traditionally, the VAE formalism [12] leads
to minimize the Evidence Lower BOund loss function:

ELBO = L, — Dx1(q(z|X)||p(z)). o)

where Lyce = Eqz)x) [log (p(X|z)] with p(X|z) being the
generative distribution. This variational bound to be minimized
consists of a reconstruction term, which ensures high-quality
image reconstruction, and a regularization term, which en-
forces a closeness between the latent space distribution and
the desired prior. For a complex-valued Gaussian model, the
reconstruction loss £,.. is formulated as an L? loss, while the
Kullback-Leibler (KL) divergence [21] is expressed as:

Dir(q(z|X)|lp(z) = |lpll*+
17 <a - %logo (002 . (5|°)°2)> . (6)

Here we consider the 3-VAE [23], in which the importance
of the regularization term is weighted by the coefficient .
The new loss function Ly 4 to be minimized becomes:

Lyag = Lyec +BDkr . (7N

B. Change detection

SAR images, which exhibit high spatial and spectral dy-
namics, therefore require statistics to be calculated locally.
We complete the anomaly detection process with a complex-
valued VAE by analyzing the reconstruction error between
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Fig. 2: Qualitative comparison between the RXD detector built
with SCM and the complex-valued VAE with a Frobenius-
based change detector. Images (b) and (d) are displayed using
the top 2% of values.

the input image and its reconstructed version with covariance.
For each pixel £ € [0,h — 1],1 € [0,w — 1], we define a
boxcar By of cardinal |By |, surrounding and centered on
the pixel k,l. An anomaly score is defined as the Frobenius
norm between the covariance matrices estimated on a boxcar
from the reconstructed signal and from the original signal:
N 2
Apg = Hﬁ:kxl - ﬁ:szH ) (8
b
where Ek,l € C**4 is the covariance matrix of the polarimet-
ric channels. For each Bj; of X (and similarly for each By ;
of X ), it is calculated as follow:

> xixf 9)
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Other change detection methods, based on covariance-equality
tests [24], will be investigated in the future.

IV. EXPERIMENTAL RESULTS
A. Data

We train the proposed complex-valued VAE on a single-
look complex (SLC) fully polarimetric SAR image acquired
by ONERA’s SETHI airborne sensor [25]. The original image
has spatial dimensions of 4800 x 30000, with a pixel resolution
of 20cm in both azimuth and slant-range directions. During
training, the image is divided into multiple slightly overlapping
patches of size 64 x 64, using a stride of 50 pixels. We
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Fig. 3: Anomaly maps generated by the RXD-SCM detector and the complex-valued VAE with a Frobenius-based change
detector. From left to right: input image with synthetic anomalies at an SNR of 5dB added to homogeneous clutter, ground-
truth labels, VAE reconstruction, anomaly map computed using RXD-SCM, and anomaly maps obtained using the Frobenius

distance with boxcar sizes of 5 x 5 and 9 x 9 for PFA=0.02.

use 80% of the image for training and 20% for validation.
For visualization purposes, considering that HV = VH (by
principle of reciprocity), all images in this paper are displayed
using only the (HH, HV, VV) polarimetric channels mapped
to the red, green, and blue colors, respectively.

In SAR imagery, anomalies are generally unknown a priori,
complicating annotation and quantitative evaluation. To ad-
dress this limitation, we evaluate the proposed method using
synthetic anomalies (see Fig. 3) injected into homogeneous
clutter regions at a fixed signal-to-clutter ratio (SNR). The
approximate SNR for these synthetic anomalies is defined as:

SNR(x;) = A>p" 350, p, (10)

where p = (1,0,0,1)7 is the steering vector corresponding
to the co-polarized HH and VV channels, and ¥ g, denotes
the estimated covariance matrix of the homogeneous clutter.

B. VAE training settings

Our VAE is based on the complex-valued autoencoder pro-
posed in [11], with a modified latent space and the complex-
valued reparameterization described in Section III-A. Let Ck
and CDk denote encoder and decoder blocks with k filters,
respectively. The encoder and decoder architectures consist of
C32 - C64 — Cl1l28 - C256 and CD256 - CD128 -
CD64 — CD32, respectively. All convolutional kernels have
a size of 3 x 3. To better capture the global structure and
variability of the input training patches, the convolutional
kernel of C32 is increased to 9 x 9. All C32, CD32, CD64,
CD128 and CD256 use a stride of 1.

For an input of size 64 x 64 x 4, the encoder outputs a feature
map of size 8 X 8 x 256. In our experiments, compressing
the latent space by a factor of 2 yields the best AUC. To
improve image reconstruction quality, S is set to O during the
first five training epochs, then increased linearly from the 6th
to 15th epoch up to 1076 and kept constant thereafter. The
value of 3 is heuristically chosen to reach a balance between
the reconstruction loss and the KL divergence. We use the
Adam optimizer with a learning rate of 10~ and a batch size
is set to 320. Training is performed on an NVIDIA RTX 4090
GPU, with an average duration of approximately 3 min 15
seconds. The best model is defined upon the best validation
reconstruction loss, which converges after 109 epochs.

C. Anomaly detection performance

For the RXD detector, the Sample Covariance Matrix is
estimated using a boxcar of size 31 x 31 containing an
exclusion window (cell guard) of size 21 x 21.

Fig. 3a shows cross-shaped anomalies with an SNR of 5dB,
which are particularly challenging to detect. As illustrated in
Fig. 3c, the VAE output effectively suppresses these anomalies,
which is beneficial for subsequent change detection. The detec-
tion maps shown in Fig. 3d—f are thresholded at a probability
of false alarm (PFA) of 2%. The qualitative results indicate
that the complex-valued VAE outperforms the Reed—Xiaoli
detector. It is also worth noting that increasing the size of the
change-detection boxcar improves detection performance.

1.0 1 —— Reed-Xiaoli SCM
== complexVAE - Boxcar 9 Rarid
+ complexVAE - Boxcar 5 s
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Fig. 4: Probability of Detection versus log,o(Py,) for an
anomaly with an SNR=5dB.

V. CONCLUSION

This paper improves anomaly detection in SAR imagery
by extending conventional reconstruction-error analysis with
a complex-valued variational autoencoder combined with a
covariance change detector. Both qualitative and quantitative
evaluations demonstrate superior performance compared to the
classical Reed—Xiaoli detector at an equivalent probability of
false alarm. Future work will focus on improved learning
strategies and advanced statistical detection schemes based
on covariance-equality tests to further enhance robustness and
detection accuracy.
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